EPICS at Fermilab: Not just D0 anymore Cavities, Cavities, Cavities

Geoff Savage for the Dzero and ILCTA controls groups
Wed June 14, 2006
EPICS Collaboration Meeting

Current EPICS Projects

- Run II Experiments
 - D0 Controls.
- ILC Test Accelerator (ILCTA) @ FNAL
 - Cavity testing in three facilities, maybe a fourth
 - Horizontal Test Facility/Coupler conditioning (MDB)
 - Run tests in August 2006
 - Vertical Test Facility (IB1)
 - Getting started
 - Beam test (NML) using photoinjector currently at A0
 - Preparing facility cryo installed at the end of 2007
- Other
 - Proton Driver EPICS only control system
 - Nova Seriously evaluating EPICS as control system for DAQ. Maybe also for controls itself?

D0 Detector

- Increased luminosity in Run IIb
- Just finished detector upgrade
 - Silicon layer 0
 - Enhanced triggering systems
- Goals for controls
 - Support new field busses
 - Remove 68k processors from system
 - Move to EPICS 3.14.8.2
- Controls all EPICS all the time
 - DAQ controls are independent

D0 Controls

- Two new field buses
 - CANbus driver wrapped in ASYN
 - TPMC816 dual channel PMC CANbus module
 - Implements limited CANbus feature set
 - Raw ethernet driver in ASYN
 - Linux IOC connected via fiber to remote crate
- Trying to get to 3.14.8.2
 - Tested but not deployed
 - Currently using 3.14.6 and 3.13.4
- MVME5500 processors
 - Remove remaining 68k processors ~ 25
 - Some problems similar experiences?

ILCTA Controls Systems

- ACNET (FNAL)
 - Accelerator Division
 - Drivers/interfaces for FNAL devices already written and in use at Fermilab in ILCTA (HRM)
- EPICS (ANL)
 - Cryogenics interface for MDB and NML.
 - Maybe for IB1, but have large IFIX base.
 - IB1 controls system
 - At least partial (maybe complete) control system at MDB
- DOOCS (DESY)
 - LLRF (Simcon 2.1/3.1 boards) supplied by DESY
 - EPICS driver written, being debugged
 - Digitizers supplied by DESY
 - A0 is dominated by DOOCS devices.
 - Photoinjector will move to NML being controlled by DOOCS

- ILCTA review committee in FY05 recommended picking one
 - all were considered considered capable of meeting technical requirements
 - Recommended DOOCS or EPICS with a slight preference for EPICS because more technical help available
 - Have not yet achieved this (LLRF controller is DOOCS)
- IFIX (Intellution) / APACS Cryo
- Matlab and LabView
 - Engineering development tools, not control systems
 - Try to limit usage to analysis

FNAL EPICS Personnel

- About 10 people from all over the lab most are new to EPICS < 6 months experience.
- Accelerator division
 - Sharon Lackey, Dennis Nicklaus, Paul Joireman, Kevin Martin
- Technical division
 - Dennis Shpakov
- Particle physics division
 - Vladimir Sirotenkov, Fritz Bartlett, Geoff Savage
- Computing division
 - Ron Rechenmacher (DOOCS), Luciano Piccoli (DOOCS), Kurt Biery (Nova)

ILCTA MDB - Paul Joireman

EPICS Pieces

- Tools
 - EDM
 - Channel archiver
 - Sequencer
 - Java CA
- vxWorks IOC
 - vxWorks VME device support
 - vxWorks symbolic device support
 - User written C/C++

Linux IOC

- Driver called from device support
- Commercial driver wrapped in ASYN
- Windows IOC
 - OPC device support from BESSY

Modulator Control

Kevin Martin

Klystron Interlocks

Dennis Nicklaus

ADC Readout

Paul Joireman

- For klystron interlocks
- 12 channel 16-bit VME module
- EPICS R3.14.7, vxWorks 5.4, MVME 2434
- Control/monitor with vme device support
- Data readout into processor memory and initialization with C++ driver
- Access data with EPICS vxWorks symbolic device support

LLRF - Accelerator Division

Dennis Nicklaus and Sharon Lackey

- SimCon 3.1
 - From DESY with DOOCS driver
 - Controlled from Force processor
 - Matlab interface abandoned
- Database records use vxWorks VME device support
- EPICS R3.14.7, VxWorks 5.4, MVME2434
- Create user interface with EPICS Display Manager (EDM)

LLRF - Technical Division

Dennis Shpakov

- Learn how the SimCon 3.1 card works
- Use C functions to perform initialization
- Control/Monitor with VME device support
- EPICS R3.14.8.2, MVME5500, vxWorks6.1

PLC Communication

Geoff Savage

- AutomationDirect DirectLogic PLCs
 - Use for general purpose I/O and PLC logic
- Implement network communication through add-on ECOM module
 - DirectNET over ethernet protocol
 - Serial communication requires more infrastructure
- Wrap the supplied linux driver in the ASYN framework
- Use ASYN device support devEpics
- Linux desktop, EPICS R3.14.8.2

Conditioning Control

Dennis Nicklaus

- Use the sequencer to control the cavity conditioning sequence
- Requires all the systems to be accessible via EPICS
- EPICS is a "glue" that connects systems from different groups

Gateways to Other Systems

- EPICS IOC that would be a gateway to DOOCS - Ron Rechenmacher
 - DOOCS is already a CA client (R3.12?)
- ACNET-EPICS Vladimir Sirotenko
- IFIX-EPICS Vladimir Sirotenko at D0
- IFIX/APACS-EPICS through OPC -Vladimir Sirotenko
- Labview EPICS community

Cryogenic Systems

Vladimir Sirotenko and Sharon Lackey

- Base EDM page for ILCTA cryo systems
- Looks like existing ACNET GUI
- Sharon Lackey

	Data Brow	ser	
<u>File Edit Data View Too</u>	ols <u>H</u> elp		
			09-JUN-2006 09:31:49 CD7
NAME	MEMO	A	√D
BROWN REFRIGERATOR			
Vet Engine			
q:CTF_WET_B/SPREAD	Speed Readback	184	5 Rpm
q:CTF_MISC_B/PJB1	Single Phase Pressure	4.6	39 Psig
1:CTF_WET_B/RWEOUT	Outlet Temperature	159	8 DegK
a:CTF_WET_B/RWEIN	Inlet Temperature	524	.9 DegK
ry Engine			
q:CTF_DRY_B/SPREAD	Speed Readback	0	Rpm
q:CTF_DRY_B/RDEIN	Inlet Temperature	949	.3 DegK
:CTF_DRY_B/RDEOUT	Outlet Temperature	526	i4 DegK
EVXBY			
: CTF_EVXBY_B/POS	EVXBY position	100	.4 %
:CTF_WET_B/RWEIN	Inlet Temperature	524	.9 DegK
TUXVI			
:CTF_EVXJT_B/P0S	EVXJT position	99	79 %
:CTF_MISC_B/PJB1	Single Phase Pressure	4.6	39 Psig
VX1			
:CTF_EVX1_B/P0S	EVX1 position	100	.9 %
:CTF_EVX1_B/TX2LP	EVX1 proc variable	129	Psig
VX2			
:CTF_EVX2_B/POS	EVX2 position	99.	58 %
:CTF_EVX2_B/TX2LP	EVX2 proc variable	129	Psig
VXRET			
:CTF_EVXRET_B/POS	EVXRET position	102	.5 %
::CTF_WET_B/RWEIN	Inlet Temperature	524	.9 DegK
VXLN			
::CTF_EVXLN_B/POS	EVXLN position	-2.4	97 %
::CTF_MISC_B/LLXLN	HX Nitrogen Pot Level	-1.4	93 %
<mark>arameter p</mark>	age	Lavorano	
1 0		Accelerator	Common Units =

- Java p
- ACNET and CA communication

Channel Archiver

Vladimir Sirotenko

Some comments

- From Margaret Votava
 - ILCTA controls leader
 - Also working on ILC costing
- Presented to MICE (Muon Cooling) collaboration
- No modifications on my part

What is DOOCS

- Distributed Object Oriented Control System http://tesla.desy.de/doocs/doocs.html
- Written by a small team at DESY over the last decade
- Control system for TTF and most likely choice for XFEL
 - Cyro system is EPICS
- Features
 - Newer than EPICS and therefore makes more modern architecture choices
 - Uses RPC for communication path
 - Devices are objects
 - Includes DAQ support
 - Includes a finite state machine
 - Can talk to EPICS iocs
- Drawbacks
 - Only user group is DESY, other than then ILCTA
 - Support from experts is limited not nearly as responsive as the EPICS community
 - Not well packaged for development outside of DESY
 - Much work done here and is getting better
 - EPICS can't talk to DOOCS devices (but this is a problem with EPICS ...)

EPICS Development Issues

- Development is done by a collaboration of users:
 - ANL (primarily) supports EPICS base (ie, front end support)
 - Extensions (applications) are provided as needed alarming, GUI support, archiving, etc
- No standards for package, quality control, support, etc for extensions
- Multiple extensions with same functionality
 - GUI support is primary example
- Larger scale developments/enhancements have no resources
 - Have a large todo list, but no organized/funded/supported todo-ers
 - ANL is committed to APS support
- Several items on todo list are to implement features already available in DOOCS

ILC Controls Digression

- Currently imagined (at least costed) as taking existing controls system as base with significant modificiation.
 - EPICS and DOOCS are obvious candidates
 - Way too early to make this decision
 - Still may decide to write from scratch
- Global controls group (excluding LLRF) consists primarily of people from ANL, FNAL, SLAC, and a little from DESY
 - add KEK and more DESY for LLRF
 - ANL and SLAC are providing personnel help for ILCTA
 - DESY providing equipment for ILCTA

ILC Tests Areas

- IB1
 - Will be EPICS, but using the DESY LLRF board
 - Cryo either IFIX or EPICS
 - Mostly TD Personnel
- MDB
 - Will most likely be all EPICS
 - Cryo is EPICS
 - Geoff working on EPICS PLC klystron interlock driver.
 - Still using old HRMs speaking classic protocol (no EPICS interface, but a DOOCS one)
 - Mostly same software personnel as proton driver (i.e., epics)
- NML Under design/construction
 - Will take photoinjector from A0 => photoinjector control will be DOOCS for at least the short term (next year or two)
 - Cryo will be EPICS (modelled after MDB)
 - Evaluating possibility of an EPICS -> DOOCS interface so applications can be either one.
 - It's an R&D playground in addition to a facility to test cryostat